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Abstract. High dimensional Leslie matrix models have long been
viewed as discretizations of McKendrick PDE models. However, these
two fundamental classes of models can be linked in a completely
different way. For populations with periodic birth pulses, Leslie mod-
els of any dimension can be viewed as “stroboscopic snapshots” (in
time) of an associated impulsive McKendrick model; that is, the solu-
tion of the discrete model matches the solution of the corresponding
continuous model at every discrete time step. In application, McKen-
drick models of populations with birth pulses can be used to identify
the state of the population between the discrete census times of the
associated Leslie model. Furthermore, McKendrick models describing
populations with near-synchronous birth pulses can be viewed as
realistic perturbations of the associated Leslie model.

Key words: Leslie model - McKendrick model — Poincaré map — Birth
pulses — Seasonal births

1 Introduction

Population models fall into two fundamental categories: discrete and
continuous. In the discrete category, Leslie matrix models constitute
the basic class of age-structured models. McKendrick partial differen-
tial equation (PDE) models play the same role in the category of
continuous models. .
What are the mathematical connections between these two famous
classes of models? One well-known answer is that Leslie models are
discretizations of their PDE analogs. By simultaneously shrinking the
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discrete time step size to zero and increasing the number of age classes
accordingly in the Leslie model, one obtains in the limit the McKen-
drick model. Uribe made this connection mathematically rigorous in
[10]. Of course, the Leslic model of choice in a given application is
often low dimensional, and is hence too coarse a discretization to bear
much relation to the associated PDE.

This paper presents a completely different kind of mathematical
connection between Leslie models and McKendrick models. In brief,
Leslie models (of arbitrary dimension) describing populations with
periodic birth pulses are shown to be “stroboscopic snapshots” in time
of certain associated impulsive McKendrick models. That is, the solu-
tion of the Leslie model matches the solution of the PDE model at
every discrete time step of the Leslic model; the Leslic model therefore
becomes a Poincaré map near periodic solutions of the PDE. H owever,
the straightforward modelling approach does not vield the expected
mathematical results, and requires a careful reformulation before the
appropriate theorems can be proved. In particular, the straightforward
“naive” McKendrick model which one might write down for 2 popula-
tion with pulsed births does not approximate the typical discrete
model; an example of this is presented in Sect. 1.1. In order for the two
types of models to give similar predictions, great care must be given to
the assumptions in the McKendrick model.

The nonlinear rates in Leslie matrices must rely on the value of the
state variable at the beginning of the discrete time interval in order to
generate an “average” rate throughout that interval. This can be a poor
approximation when nonlinear rates do not occur more or less “instan-
tancously”, and when populations change during the interval. For
populations with seasonal birth pulses, Leslie models can be viewed as
idealizations in which births and all other nonlinear interactions oceur
in periodic instantancous pulses [1]. As Gyllenberg et al. [5] and
White et al. [117] have pointed out in recent papers, a more realistic
model is usually a “hybrid” containing discrete seasonal birth puises
but continuous within-season nonlinear interactions. The mathemat-
ical connection between Leslie and McKendrick models presented in
this paper will allow the array of more realistic McKendrick models to
be viewed as perturbations of idealized Leslic models. The approach
can also be used to complete the continuous dynamics which occur
within the discrete time intervals of Leslic models.

First, we motivate the mathematical approach by formally examin-
ing 2 McKendrick PDE corresponding to a simple Ricker-type map
for an imaginary population with seasonal reproduction. The major
mathematical difficulty is illustrated and formally resolved. Section 2
contains two general mathematical results: the proofs appear in the
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appendices. In Sect. 3, we apply the approach to an experimental
population with near-synchronous birth pulses using the “LPA”
Tribolium model of Costantino et al. [3, 4], Section 4 contains a sum-
mary of the mathematical connection between McKendrick and Leslie
models for populations with seasonal births, and paves the way for
a discussion of the biological connections between these two modelling
approaches.

1.1 Simple motivating example

Consider a population having overlapping generations and a seasonal
birth pulse occurring once a year. Assume the population is censused
at the end of one-year discrete time intervals, immediately before the
reproductive pulse. Suppose the fraction of animals surviving one year
is e7#, and reproduction is density-regulated in the manner of the
Ricker equation:

Xppg1 = DXy ™ TH 4 ek,
Xg =Py >0 (1)
me{0,1,2, ...}
with y, b, ¢ > 0. An associated McKendrick PDE is
Pi+ pa= — up(t, a)
p(t, 0) = BB y(t)e ™" @

p(0, a) = ¢(a)
where

v = [t a)da 3
]

% fo<tmodl=e '
o) = {0 otherwise @
Py = J‘“’ @(a)da

Q

Laz(

for small & > 0. (The symbol = stands for “is defined to be™.) The
McKendrick model (2} is nonautonomous because of the periodic
forcing (seasonality) in the birth rate f(¢). (The same effect of pulsed
births can be obtained with an autonomous PDE if the birth rate is
impulsive in age; see Sect. 4.) The Ricker-type map (1), however, is
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autonomous because it samples the population size only once every
period.
The age distribution solutions of (2) will be traveling waves

ot @) = {(g(a — e ft<a )

(t —a)ylt — aye ¢ Ve TH ftza

consisting of a “train” of spikes having compact support and width
¢ (see Fig. 1)- If we integrate both sides of (5) in age and simplify, we
obtain

y(O) = j g y(e 20 Vs + e TyO) ©)
(4]
and so by (4), for all me {0,1,2, v b

mte
y(m + 1) m—:% j y(s)e"‘y(s)c“‘{""“”‘)ds +e *y(m) (N

The temptation is strong to “formally” take &= 0 and obtain the
recursion map (1) for the limiting solution y°. However, the state
variable y not only depends on & but is actually developing jump
discontinuities Over sach time interval {#, it 4+glase~0 due to the
occurrence of the pirth pulses on these intervals. The average value
(y"(m)e'“ﬂ’"’e“") = lim,aod i’ y(s)e‘”""s’e”"‘("’“'“"ds of the integ-
rand across the developing jump is 1ot in fact, y° (m)e~ " e (see
Fig. 2A). Appendix A gives @ simple analytic illustration of the failure
of this approach.

The mathematical difficulty is due to our assumption that new-
borns in the cohort spike arriving during the time interval [m, m + €]
are reproductively mature, and hence give birth, as soon as they
themselves are born. When £ 18 small, this is not a good assumption
from a biological standpoint. If instead we define the number of
reproductive individuals y{t) in equations (2) and (3) t0 be

$(t) = r o(¢, d)da,

then no animals enter the reproductive age interval [&, ) during the
reproductive time interval [m, m + ¢]. In this case, the jump discon-
tinuities in y develop on the time intervals [m + &M + 2¢] when the

new cohort spikes enter the age interval [e, o) and will no longer be
a problem in the integral equation for y, which is now ’

(1) = ed”'ffﬂﬁﬂ(s)ds Hfir<s
e 5'0“2B(S)}’(S)e_”(s’e”“(‘“s)ds e MP, ftze

®
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Fig. 1. Age distribution of model (2) at times t =0, 1, 2. Here b= 9% ¢ =1, y =2,
=01, Py =2, ¢(a) =20 for 09 S a 5 1, and ¢(a) = 0 otherwise

When evaluated at integer values of ¢, (8) becomes

0= [ " o()ds

b £
y{1) = - f yi(s)e T FE el "0 4 emkp,
0

m+z
yim+ 1) = - j y(syeF@-pmtl-9gs L e~Eyim) form = 1
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Fig. 2. 'Time series for state variable y in models (6) and (8). The parameters and initial
data are the same as in Figute 1. A} Here y(f) = [§ p(t. a)da in (2} and x(¢) is the
solution of (1). B) Here y(f) = [ p(t, a)da in (2) and x(¢) is the solution of (1)

Formally, we now obtain
Yo(m + 1) = by°(m)e ™" ™ ¥ + e 74y (m)
¥°(0) = Py

in the limit as e — 0, where y° is the limiting solution of (8). Intuitively,
the solution of the discrete map (1) can be viewed as a sequence of
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“snapshots”, taken at integer times, of the limiting solution y° (see
Fig. 2B). The mathematical key is to ensure the age class y is not itself
undergoing a pulse (developing an unbounded derivative) while it is giving
rise to the birth pulse.

In the next section we generalize this formal approach and make it
mathematically rigorous.

2 General mathematical results
2.1 Notation

The following notation will hold throughout the remainder of
the paper. Let N = {0,1,2, ...}, N* = {1,2, 3, v}y RY 2 [0, o),
R, = [0, o), and ¢, a € [0, o0). n 2 1 will be the fixed integer dimen-
sion of the Leslie model with ID = {1,2, ...,n}. £€(0,1/8) will be
a small positive real parameter, Sums with ill-defined indices, such as
PR 1> are taken to be zero. L{A, B) will denote the set of Lebesgue
measurable functions from A to B, and C(X) the set of continuous
functions on X.

2.2 The two models

Let
x(m + 1) = Mix(m))x(m)
x(0) =P ®
be an autonomous Leslic model, where x= (1, X2, ..y %)

P = (Py, Py, ..., P,Y*,me N, and the “projection” matrix M is given by
Mx) = '

bifikge™  brfalx)e™  byfy(x)e bufulxje”
e ani) -y 0 0 0

0 e“ﬂzpzfx)"ﬂz 0 - 0

0 0

0 0 @ 1P 08 < ey e—cnp.:cr)*.u..

Here the parameters P, b;, ¢;, 4; € R* for all allowable subscripts i.
The e™* factors in the first now appear because we will be assuming
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the birth pulses occur immediately following the census times
melN.e~ is the fraction of newborns which survive until the next
census time.

Define

piy) = paly) Vi>nVyeRy
cj=c, Vji>n
=t Vi n
For each g, consider the nonautonomous McKendrick model
Py pa= — Ala, y(e)p(t. @)
plt, 0) = B¢, y(®)) (19)
p(0,a) = ¢(a)

where
p(@) = (1), y2(0)s -5 valt)
yi(t) = Jl”a p(t, a)da for ie D\{n}
i— 143
yalt) = Jm plt, a)da
a~1+3e
Aa,y) = c(a)pla, y) + pla)
By = %, HOKON
and l

ply figsa<i+d R
Py = {0 otherwise forieN

4 jt+esafi+le

= for i *
c@ 0 otherwise orieN
i+1
Ui = J wl@yda forielN
% 0<tmodl =Ze
At) =<° = i ieDandallt =0
Al {0 otherwise forieDandallt =
L j_eg<gasgi
. E = p— .
ola)= {0 otherwise for ie D

At integer values ¢ = m of time, the population age-distribution will
consist of a train of cohort spikes supported on the age intervals
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Ui —&Jilje{l,2, ...,n + m}. At these times, y;(m) = {i*3 . p(m, a)da
will recover the number of individuals of ages [i — ¢, i]. The birth
and death pulses occur on the time intervals [m, m + g] and
[m + & m + 2¢], respectively, and are staggered so the age classes y; are
not undergoing death pulses while giving birth (see also hypothesis H1
in Sect. 2.4). Density-independent death rates such as u need not be
pulsed.

The discontinuities in the y;, develop on the time intervals
[m + & m + 2&] (when the death pulses occur) and [ + 3¢, m + 4¢]
(when the cohort spikes enter the y; age intervals [i - 1 + 3¢, i + 3e]).
These mathematical technicalities (plus H1 in Sect. 2.4) will ensure the
age class y; is not itself undergoing a pulse (developing an unbounded
derivative) during the time it is giving rise to a birth or death pulse.

2.3 Alternate model formulations

In the proofs of the theorems, we will need alternate forms of models (9)
and (10). It is straightforward to verify the Leslie model (9) satisfies

xm+ 1) =
P 1e—ZJ:LM-.[c;p}(x(ﬁm_H 1)+
ifm+1<i
(S5 bifilctm — i + D)x;(m — i + 1)]e ™ #oe S lemelitm=i+ 1) +u)
if m+12i
Xulm + 1) = o

of +m .
Z;=n~m-1PjeMEMJ legpolxlg—M+m]  f m+l<n

ETM_ 0" +1 {{Z::: b fix() x;(rY]e e e~ Teri eabyle(g + 1) +#a]}

+ Z;mlPje—zrﬂ[quq(x(q—j))'i'ﬂq] if m -+ }. ; n

for i e D\{n}.
An analogous reformulation for equation (10) arises from formally
integrating along its characteristics to obtain

@pla — t)e~l-d@rti—atada ift<a

Bt —a,y(t — a))e""j;"(“:?(f—ﬂ“hzﬁdm ift>a (12)

p(t, a) ﬂ{

and then integrating equation (I12) over each age class
[i— 1+ 3¢ i+ 3¢] to produce a system of integral equations in the
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state variables ¥y, Y2, -+ » Va'
yi(t) =

[0~ tje ~Ji- Ay maraiizgg if t<i—1- 3¢

e Bt —aylt — a)je ~Sedlertmatadady if j—143e St < i+3e
" I:‘+3a(9(a — f)efedlept=ataldsgy

it Bl —ayt — a))e fodlrtt-ataddedg if 4 3e St

yalt) = (13)

.[:20“1+35 pla— f)cugz“'d(“'y“ma”))dada ft<n—1+4+3¢

e Bt —ayt— g)e federtatadindy if p—1 + et

L j;:o QD(a - t)e"jgwa’j(“’y“W“"'“nd"da

for i e D\{n}.
Qur theorems will concern system (13) rather than the motivating
PDE (10).

2.4 Hypotheses

The following hypotheses will be used:

H1) There exist disjoint sets A and B with ID = AUB such that
pi(py =0forallie A; and for all j € 1B, p;(y) depends only upon those y;
with i &€ A,

H1*) p(y)=0; and for all ie D\{n}, pi(») = pi(¥a) depends only
upon Y.

H2) pe LAR*,R*); and pifie LR, R¥) forall ie .

H3) There exists M € R™ such that forallae R* and y, xe R,

ip(a, y) — pla, x)| = Mly — x|
H4) There exists M € R* such that forall te IR™ and y, x € R},
0<Bty=sM

and
iB(t,y) ~ B(t,x)| £ Mly — x|

The two major theorems hold under hypotheses Hi-H4. For
notational simplicity in the proofs, we will utilize the stronger assump-
tion H1* instead of H1. Hypothesis H1 ensures the age class y; is not
itself suffering a death pulse while it is impulsively affecting another
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class. The Lipschitz conditions H3-H4 provide the contraction map-
ping used in the proof of Theorem 1. Hypothesis H4 is a typical
population birth rate “crowding” assumption. The Lipschitz condition
H3 on the death rate is not so typical but will hold for most applica-
tions. While H3 (along with H4) is sufficient to provide the contraction
mapping in the proof of Theorem 1, it is not necessary and can be
weakened at the expense of unilluminating technicalities.

2.5 Main theorems

Algebraic simplification of (13) and evaluation at 1 = m + 1 will lead us
(in Appendix B) to a system of integral equations essentially having the

form
m+e

yim + 1) = % G(s, y9)ds.

m

It will be clear that a formal evaluation y°(m + 1) = G(m, y°) in the
limit as ¢ — 0 will lead to the expected recursion formula (11). Roughly
speaking, we will establish this formal calculation by first showing
G(m, y°) = lim,.oG(m, y°} exists, and then showing G(s, y*) does not
become arbitrarily steep near integer values of s as ¢ — 0. The two main
theorems are now stated; their supporting lemmas and proofs appear
in Appendices C-E.

‘Theorem 1. Assume hypotheses H1-H4. For each ¢, equation (13) has
a unique solution y* e C(R*).

Theorem 2. Assume hypotheses H1-H4. For all me N, y°(m) =
lim, . o*(m) exists, and

¥ (m) = x(m),
where x is the solution of (9).

3 Application to a Tribolium model

The Leslie-type discrete Tribolium “LPA” model
Lim+1)= bA(m)e"“*‘L(”"_c“A("’}
P(m+ 1) =(1 ~ w)L(m) (LPA)
A(m + 1) = P(m)e 4™ 4 (1 — p)A(m)
melN
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has been thoroughly validated by Costantino et al. using laboratory
data (see [3, 4], and the references therein). It has been used to design
laboratory experiments that have successfully produced a variety of
nonlinear dynamical phenomena, including chaos, in flour beetle
populations. The discrete time interval is 14 days. L(t) denotes the
number of feeding larvae at census ¢, P(f) denotes the number of
nonfeeding larvae, pupae, and callow adults, and A(f) denotes the
number of adults. g and y, are the per unit time larval and adult
probabilities of dying from causes other than cannibalism, and ex-
ponential e ~#4 represents the probability per unit time that a pupa
survives cannibalism by adults. Since the egg stage is short relative to
the 14 day time step, Costantino et al. made the simplifying assumption
that the egg stage has duration zero. b therefore desotes the average
number of larvae recruited per adult per unit time in the absence of
cannibalism, while e * %4 represents the fractional reduction of
larval recruitment due to cannibalism of eggs by larvae and adults.

In order to study the dynamics of a Tribolium population whose
birth rate is periodically pulsed, Costantino et al. and the author have
designed and initiated a laboratory experiment in which a pulse of new
larvae enters the larval class immediately following each 2-week census.
In this experiment, the life stages are therefore censused when the
animals are at the end of their current lifestage, and the beetles enter
the next stage immediately after census. The LPA model is easily
medified to describe post-census pulsing:

L(m + 1) = bA(m)e ™ cabtm—cadlmgg )
P(m + 1) = L{m)e 4t (14)
A(m + 1} = (1 — p)(P(m} + A(m))
Let (L{0), P(0), A(0))* = (Lo, Po, 4¢)*. Then the PDE analog of
(14} is
P+ pa= — [c(@)ya () + pla)] p(t, a)
p(t, 0) = ) ys(expl — cap1(t) — ceaya(®]  (15)
p©, &) = pla)
where the units of time are 14 days,
i+ 3¢
0= " pit.ada
3e

24+ 3¢

nmﬁj p(t, a)da

1+ 3¢
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oo

ya(t) = f p(t, a)da

2+ 3¢
and
—In(l—y) 0Zax<l

,u(a)ﬁ{ 0 12a<x?2
—ln(lea) 2<a

c(a) Z 1+egas1+2
~ |0 otherwise

2 0<tmodl=<e

ey = 0 otherwise fort 20
L 1-¢<axt
L 2-¢gax2

vl@) = 4 Jggasg3
0 otherwise

To compare this impulsive McKendrick Tribolium model with nonim-
pulsive counterparts in the literature, see [2, 6-8], and [9].

Theorems 1 and 2 apply, so there exists a unique solution
Y0 = (10, ¥5(0), ¥5(0)* in C(RY) of the integral formulation of (15)
for which

ling Vi(m) = L(m); lir% Ya(m) = P(m); liné Y3(m) = A(m)

for all me IN.

System (14) is an idealization which assumes instantaneously pul-
sed births as well as other nonlinear interactions. Equation (15) ad-
vances in two directions: first, for very small ¢, it predicts the continu-
ous dynamics in between the 14 day predictions of (14); and second, it
allows more realistic pulses (of duration ). However, (15) still requires
the adult-on-pupal cannibalism to be pulsed; and in both models,
cannibalism of eggs is instantaneous because of the simplifying
modeling assumption that the egg stage is of zero duration,

Although the cannibalism rates in (15) must be pulsed in order to
recover (14) as ¢ — 0, in reality they are not pulsed, but continuous, in
this experiment. The most realistic model is probably a PDE model in
which the birth rate is pulsed but the cannibalism rates are not, Such
a model can be viewed as a realistic perturbation of (15), which in turn
can be considered a perturbation of (14). After sufficient data is col-
lected from the ongoing experiment, we will parameterize these various
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kinds of models in order to compare the success of the modelling
strategies.

4 Discussion

In summary, for populations with seasonal births, discrete Leslie
models of any dimension can be viewed as stroboscopic snapshots in
time of an analogous continuous McKendrick model. Near periodic
orbits of the McKendrick model (13), the Leslie model (9) therefore
becomes a Poincare map or “first return map” of (13). Thus, the most
basic class of discrete population models can be derived from the most
bagsic class of continuous population models under the assumptions of
instantaneously pulsed births and nonlinear interactions.

The derivation given in this paper is not the only way to set up such
a connection between Leslie models and McKendrick models. For
example, an identical theory can be derived by pulsing the birth rate in
age instead of time, as long as the initial population is in discrete
cohorts. That is, if each individual can give birth only at integer ages,
and if the initial population age distribution consists of spikes situated
at integer ages, then the dynamics will be the same as if births were
allowed only at integer times. In this case, model (13) would be
autonomous. Also, one could model the birth pulse in (10) to occur just
prior to the discrete census time in (9) rather than just after the census
time, so that the animals are in the beginning of their current life stage
whenever they are censused in {9). Furthermore, hypothesis H1 could
be dropped so that every class could affect every other class; but the
nonlinear interactions would have to be staggered so as not to interfere
with each other.

In most applications with scasonal births, the other nonlinear
interactions will probably not be pulsed, and it may or may not be
necessary to use a “hybrid” model with discrete births and continuous
within-season death rates rather than a Leslie model. The mathemat-
ical connection between Leslie and McKendrick models presented in
this paper allows the array of more realistic McKendrick models to be
viewed as perturbations of the idealized situation described by the
Leslie model.

As was demonstrated in the Introduction, the straightforward
“naive” approach for deriving a Leslie model from the impulsive
McKendrick model does not work. If the birth and death pulses and
age class boundaries are not appropriately staggered the impulsive
PDE does not yield the Leslie recursion formula. Suppose, however,
the straightforward approach is taken with the PDE. What kind of
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model emerges as ¢ — 0? Will it satisfy some discrete recursion formula,
and if so, which one? How will it relate to a Leslic model? Would such
a model be useful? The answers to these questions will be considered in
a future paper.

Finally, the pulsed-birth Tribolium experiment described in Sect. 3 is
a first attempt to address the biological connections between the
McKendrick and Leslie modelling approaches. In particular, the math-
ematical connection discussed in this paper forces us to examine in detail
various biological assumptions made by modellers, and to consider
carefully the interpretations of parameters in both classes of models. The
discrete and continuous models used to guide this experiment provide
testable hypotheses regarding the effect of periodically pulsing Tribolium
larval recruitment. As we saw in the Introduction, the predictions of the
straightforward “naive” impulsive McKendrick model will be quite
different from the predictions of the discrete model (14) and its correctly
constructed McKendrick model analog (15). The experiment is designed
to test the predictions of these various approaches.

Acknowledgements This work was supported by the American Association of Univer-
sity Women by means of an American Feltowship. The author thanks R. F. Costantino
for asking, “Can Leslie models be viewed as Poincaré maps of McKendrick models?”,
and also J. M. Cushing for his comments.

5 Appendices
A. Failure of straightforward approach

Consider the Volterra integral equation

(t) = f A x(s)ds + xq
[

where

$ fO0<s<e
4ls) = {0 otherwise

The solution is
x5(t) = {xoeﬂh if0sr<e
xpet frzs
and so the limiting solution x° is
() = {xo c %f t=0
xgef ft>0
rather than the naive formal calculation x°(t) = cxo + xo.
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B. Simplification of model (13)

Algebraic simplification of (13) evaluated at t =m + 1 yields

L-m-1_ Gim(s,p)ds if m+1<i
Mm+nm%L Gi"57)

1 L
Lm-itlteghmis yyds f m+ 121

E jm—i+1

for i e D\{n}

5o I GE™ (s s m L <n
Yol 4 )= SR GEmr (s, yds mt+lzn (16)
+ 551 i G5 (s p)ds

where

j+2c

| -1 -
Gi™(s,¥) = Pivm- 13—2111’»-»1%1,.“ epria=sidag, (q)

Gy™(s,y) = [ S by S () yls) eSS (5
i=1 .

jhm g opat 2
-Z

G’;-’"'J'(s, y) = Pje” Srian Can(Y(ﬂ"S)}daSi(s)

v

™ (s, 0) = [z RO O)

_ymt i gt

Gymi(s, ) = Po T il em S, (5)
Si(s) = oL nee
S,(s) = eIt ni@)da

A formal evaluation of (10) as & — 0 produces the recursion formula
(11). We rigorously establish this formal calculation in Appendices
C-E.

Lo ap et s g, (o)

C. Proof of Theorem 1

Theorem 1. Assume hypotheses H1-H4. For each &, equation (13) has
a unique solution y* € C(R™),

Proof. The system of integral equations (13) defines an operator
equation
y="Ty
with T,: C[0,k] — C[0,k] for all ke R™.
Using the Lipschitz conditions H3-H4 and the contraction map-
ping principle, one can show there exists 8, > 0 such that T, has
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a unique fixed point y* € C[0, §;]. It is then possible to rewrite the
operator equation as

y =Ty
where T, is contraction on {z € C[0, d,] :zlro,6q = y°} for some &, > 0,
and so extend the solution y* to [0, 8,]. It is straightforward to show
that for repeated applications of the contraction mapping principle, the

d; are bounded away from zero; hence the solution can be extended to
arbitrarily large intervals. ]

D. Definitions and lemmas

We invent the following definition:

Definition 1. Let & = {*(s)}.. o be a family of functions defined on
X &R, and a > 0. F is a-equiregular at k € X is and only if

Vy > 033 > 0Ve < 0Vs e [k, k + ae)(| £5(s) — (k)] < 7).

Clearly a-equiregularity at k implies o’-equiregularity at & for
o <. Also, if g is globally Lipschitz and { f*(s)}.~ o is a-equiregular at
k, then {g(f*(5))}.»0 is also x-equiregular at k. '

Lemma3. Let # = { f*(s)};>0 and o0 2 1. If & is a-equiregular at k and
SOk) = lim, o f¥(k) exist, then
1 k+ae
lim ~ Fi(s)ds = fOk).

£20 € Sy a1

Proof. Let y > 0. Then there is 4, > 0 such that whenever & < §,,
| F#(s) — fo(k)| <4 for all s € [k, k + ae). Also, there exists 8, > 0 such
that for all & < 6,, | f*(k) —f°(k)| < 4. Select & = min{d,, 5,}. Then
for <4, we have |f*(s)—f (k) = |f%(s) —f2(k) + f2(k) — £ (k)|
SIS =R+ 1 fo (k) — k)| <y for all se[k,k -+ og). There-
fore, for all ¢ < 6 and s e [k, k + ag),

fORy =y <fo(9) <S°0) +

K+

£ot) —y < [ ras<sow+y

k+{a~1)e

for all & < 4. il

and hence

Lemma 4. Assume hypotheses H1*—~H4. Let y*(t) be the solution of (13)
and let me N, Then {y}(D)}.> o is l-equiregular at m for all i e ID, and
{Ve(t)}es 0 is 3-equiregular at m.
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Proof. First note from equation (10) that for each i€ ID and me N,
y5(m) is bounded as function of &
Tet i < n. When t € [m, m + &), (13) become

j. i 5+t
yile :MJ P pengs
£ i—2&

if m=0, and

(O = %ﬁ:"mtq G‘:{m—l(s’ys)e"”jjj:"(“)"“ds if m<i
MO = Q1 mivegym=t (s, ple Iom@teds if mzi

if m > 0. Thus, in any case,

y2(e) — yim)| < yi(m) max je A% — 1]

seli—g, il

which can be made arbitrarily small for all sufficiently small &. There-
fore, {Vi()}e>o is 1-equiregular at m.

Let i = n. When t € [m, m + 3¢), (13} becomes (under hypothesis
H1%)

)= [ P s
£ n-e

ifm=0and

St [ Gy (s, p)e Rt ds i m<n
Yalt) =7 SrogipreGymo e (s, e lm@egs  if mzn

i —-— i . AT
+>:'}=1% j_aG';m Lis, ple [ plepde g o

if m > 0. Thus,
ntm a2
DE(E) — yam)] < yilm) 3. max jehHO—1)

j=n seli—g,jl

which can be made arbitrarily small for sufficiently small &. Therefore,
{¥2(t)}e>0 is 3-equiregular at m. O
E. Proof of Theorem 2

Theorem 2. Assume hypotheses H1*-H4. For all me N, y°(m) =
lim, oy (m) exists, and y°(m) = x{(m), where x is the solution of (9).

Proof. The theorem holds for m =0 since ¥(0) = P for all &.
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Suppose the theorem holds for all m’ < m. From Appendix B,

i1 TG s —ep)ds i m+1<i .
g = JEdim ! ? ] fi D
yilm +1) { it nds i my1zi O S D\H
S n—m—1 Fm.j'J'J”iG’”"-’(s ~gy)ds ifm+1<n
Valm + 1) = ,h"+ii_['+sG"’"’(s ¥ds fm+1=n
+ Zj=i %_ﬁ-ﬂ G’;’"’"(S - g, y*)ds

Essentially, we wish to show the integrands have g-limits and are
1-equiregular so we can apply Lemma 3.
Consider the case m + 1 2 i for i < n. Under hypothesis H1*, G, is

1y pit2e

G%m(s,yﬂ) " B(S’yﬂ(s))e"ZJn]z Jee SN da e = e da
By Lemma 4, {yi(t)}.> o is 3-equiregular, and hence 2-equiregular, at
each integer. By induction, Lemma 3, and hypothesis H3,

lime~ b Y g e Bop(iatm—i+1))da _ ewZ;hlc,pj(y,?(yI-m i+1)
e+

exists. Thus, by induction, H2, and H4,
Hm G5™(m —i + 1,39 = x;(m + 1),

s—=0

Also, it is straightforward to show {G5™(s, *)},»0 is 1-equiregular
at s==m — i+ 1 using the induction hypothesis, Lerama 4, and as-
sumptions H1*~H4. (The 3-equiregularity of {}5(t)}.> o is used at this
stage.)

Thus, by Lemma 3,

m—i+1+e

im yi(m + 1) = lim= G5™(s, y*)ds

=0 e208 Jp iy

= lim G5™(m — i + 1,3%)
£—0

= x;(m + 1).
The other cases are similar. 0
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